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Abstract. In this paper, the problem of applying stochastic methods to the 

analysis of standard turbulent atmospheric flow is considered. The nature of 

randomness and stochasticity is considered and contrasted to the deterministic, 

yet chaotic, nature of atmospheric turbulent flow. Despite the many difficulties 

inherent in using a statistical interpretation for turbulence, a precise inequality 

condition can be established, based on Taylor’s frozen flow hypothesis, to show 

whether or not a particular instance of turbulent flow can be considered in a 

stochastical manner in terms of individual meteorological measurements. 
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1. Introduction  

 

In many scientific fields, the word “random” has become almost 

synonymous with the word “stochastic”: however, “stochastic” refers to a 

random process rather than to “randomness-in-itself”. Stochasticity is promoted 

as an operating mode or method in many scientific fields and disciplines, while 

the enormous number of degrees of freedom and entities in atmospheric flows 

give “the impression” of stochasticity and randomness; however, almost the 

entire scientific body of work that has been written regarding the atmosphere 

could be used to show, first of all, that it exhibits memory-like properties. From 

most perspectives, the atmosphere cannot be said to be random or memoryless: 

atmospheric events take place because of present and past factors, however 

chaotically they appear to fluctuate. The presence of a quality which might be, 

even roughly, likened to memory in the analysis of atmospheric phenomena 

then denies all possibilities for such processes to be stochastic or markovian in 

nature (Markov, 1954; Dodge, 2006). Rigorous mathematical arguments for the 

non-randomness of atmospheric flow can be convoluted and complicated, and 

there does not seem to be a solid scientific consensus yet regarding the specifics 

of these arguments – however, the mere fact that atmospheric turbulence seems 

to structure itself into multiple splitting coherent bodies named “vortices” 

shows that the entire process is not random. And, of course, it should be 

highlighted that many chaotic processes cannot be considered random, and 

chaos does not necessarily imply randomness. 

In the scientific field of pure randomness, the most common example of 

“truly random units” is found as a product of what is named “algorithmic 

randomness”. Algorithmic randomness, in general, can refer to the study of 

randomly produced individual elements in sample spaces, these being the set of 

all possible infinite binary sequences (Downey, 2010). An algorithmically 

random element passes basically all devised tests for randomness (Downey, 

2010). As different types of algorithms are sometimes considered, ranging from 

algorithms with specific bounds on their running time to algorithms which may 

“ask questions” of a machine, there are different notions of randomness. The 

most common of these is known as Martin-Löf randomness, but stronger and 

weaker forms of randomness also exist (Downey, 2010). 

It is important to distinguish algorithmic randomness from stochastic 

randomness; unlike algorithmic randomness, which is defined for computable 

(and thus deterministic) processes, stochastic randomness is usually said to be a 

property of a sequence that is a priori known to be generated by an independent 

identically-distributed equiprobable stochastic process. Thus, we must not to 

confuse “stochastic randomness” with “randomness-as-such”; in any case, just 

because it is possible to conceive of, and generate, algorithms that produce “as-

random-as-possible” sequences of numbers, this does not automatically imply 

that such algorithms might be represented by real, physical processes. 
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Furthermore, despite what we know of the atmosphere, there is even further 

cause for doubt regarding such possibilities in atmospheric processes. 

 
2. The Taylor Hypothesis 

 

Despite all of these potential disadvantages, it is entirely possible to 

conceive of certain limited cases where stochastic methods can be employed in 

the study of turbulent flow. Many experimental investigations of turbulent 

velocity fields often invoke Taylor’s hypothesis, also known as the “frozen flow 

hypothesis”, to determine the spatial structure of turbulent flow based on time-

resolved single-point measurements. For the approximations to be valid, it is 

crucial that the turbulent fluctuations themselves are supposed to be quite small 

compared to the mean velocity; in other words that the turbulence intensity has 

to be relatively low (Wilczek, 2014). Thus, Taylor’s frozen flow hypothesis is 

the assumption that, under certain circumstances, advection resulted from 

turbulent circulations themselves is very small and that therefore the advection 

of a field of turbulence past a fixed point can be taken to be entirely due to the 

mean flow. 

One of standard definitions for the given circumstances: 

 
𝑢

𝑈
≪ 1                                                           (1) 

 

where 𝑢 is defined as the velocity of a turbulent eddy in the flow and 𝑈 is mean 

flow velocity (Glossary of Meteorology, 2019). This definition, however, raises 

a number of questions; one of these questions is: which eddy velocity does the 

definition entail? Another common definition for frozen flow validity is: 

 

𝑈′ <
1

2
 𝑈                                                           (2) 

 

In this manner, the hypothesis is valid when the flow speed variation 

due to turbulence is less than half of the mean of the flow speed. However, the 

term 
1

2
 appears to be chosen arbitrarily. In the attempt to construct a more 

rigorous definition, we must find a rigorously-determined inequality condition. 

It is found that Taylor’s frozen flow hypothesis, without closure and under 

general assumptions, is “valid up to time scales smaller than the correlation time 

scale of temporal velocity correlation function” (Bahraminasab, 2008). 

Many different versions of a temporal velocity correlation function can 

be constructed a priori, however a simple example can be found: 

 

𝐵 𝜏 = 𝑎2𝑒
− 

𝜏

𝜏0
 
                                                 (3) 
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where a is a given constant, and 𝜏0 is the correlation time (Tatarskii, 1961). The 

physical meaning of this interval of time is found in: 

 

𝐵 0 = 𝑎2                                                    (4a) 

 

𝐵 𝜏0 =
𝑎2

𝑒
                                                    (4b) 

 

The general definitions of the temporal correlation function and 

temporal structure function for a parameter in a turbulent flow: 

 

𝐵 𝜏 =  𝑓(𝑡)𝑓∗(𝜏 + 𝑡)                                          (5a) 

 

𝐷 𝜏 =   𝑓 𝜏 + 𝑡 − 𝑓(𝑡) 2                                     (5b) 

 

but in the case of real values, we will obtain: 

 

𝐵 𝜏 =  𝑓(𝑡)𝑓(𝜏 + 𝑡)                                             (6) 

 

In order to use these temporal correlation and structure functions, and to 

employ the statistics presented so far, we must consider that the chosen 

atmospheric parameter is random. This is problematic in the context of the 

previous discussion; however, in choosing wind speed as a parameter at a fixed 

altitude, and in the context of relatively-calm atmospheric conditions and during 

a short temporal interval which we shall name 𝜏𝑇 , this approximation can hold 

quite well. 

The following relation is also found (Tatarskii, 1961): 

 

𝐵 0 =
𝐷(𝜏)

2
+ 𝐵 𝜏                                                  (7) 

 

Then: 

 

𝐵 0 =
𝐷(𝜏0)

2
+ 𝐵 𝜏0                                      (8) 

or: 
𝐷(𝜏0)

2
+ 𝐵 𝜏0 = 𝑐𝑡.                                        (9) 

 

The equations above are thus true irrespective of 𝜏0: 

 

𝐵 𝜏0 =
𝐵(0)

𝑒
=

1

𝑒
 
𝐷(𝜏0)

2
+ 𝐵 𝜏0                               (10) 

 

The result is: 
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2 𝑒 − 1 𝐵 𝜏0 = 𝐷 𝜏0                                     (11) 
 

thus: 
 

2 𝑒 − 1  𝑈 𝑡 𝑈(𝜏0 + 𝑡) =   𝑈 𝜏0 + 𝑡 − 𝑈(𝑡) 2                   (12) 

 

In this case, Taylor’s hypothesis is true in a timeframe 𝜏𝑇 ≤ 𝜏0. Of 

course, this is viable for the simple correlation function that we have chosen 

beforehand. 

We continue with: 

 

2 𝑒 − 1  𝑈 𝑡𝑖 𝑈 𝑡𝑖 + 𝜏𝑇 ≥   𝑈 𝑡𝑖 + 𝜏𝑇 − 𝑈 𝑡𝑖  
2𝑛

𝑖=1
𝑛
𝑖=1           (13) 

 

thus: 
 

 𝑈 𝑡𝑖 𝑈 𝑡𝑖+𝜏𝑇 𝑛
𝑖=1

  𝑈 𝑡𝑖+𝜏𝑇 −𝑈 𝑡𝑖  
2𝑛

𝑖=1

≥
1

2 𝑒−1 
                                  (14) 

 

The inequality is logically given by: 

 

𝐵𝑈 𝜏𝑇 ≥
𝑎2

𝑒
                                                     (15) 

 

Because, the smaller the 𝜏, the larger the correlation function, and closer 

to 𝐵(0). 
It follows that Taylor’s hypothesis is valid in the timeframe when the 

velocity field follows the upper inequality, or when: 

 

2 𝑒 − 1 𝐵𝑈 𝜏𝑇 ≥ 𝐷𝑈 𝜏𝑇                                     (16) 

 

It is unclear, however, how the structure function behaves strictly in 

terms of the inequality; a more simplified and accurate condition might be 

derived from Eq. (4b): 

 

 𝑈 𝑡𝑖 𝑈 𝑡𝑖 + 𝜏𝑇 𝑛
𝑖=1 ≥

1

𝑒
 𝑈 𝑡𝑖 

2𝑛
𝑖=1                            (17) 

 

Given the fact that the division of the two terms is proportional to 𝑒, it 

is a given that a velocity field exhibiting very low variations during the 𝜏𝑇  

interval is “Taylor-compliant”. In order for such a velocity field to fail this 

inequality, it would have to present high enough velocity differences such that: 

 

  𝑒𝑈 𝑡𝑖 𝑈 𝑡𝑖 + 𝜏𝑇 − 𝑈 𝑡𝑖 
2 𝑛

𝑖=1 ≥ 0                          (18) 
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In principle, this also implies that a velocity field whose intensity 

decreases significantly over 𝜏𝑇  does not pass the inequality, however this might 

point to the effects of turbulent dissipation. At the same time, a velocity field 

whose intensity increases over 𝜏𝑇  passes the inequality, which is just what one 

might expect given a potential dominance of mean flow effects. 

 

3. Conclusion 

 

The notion of the structure function of a parameter in a turbulent flow 

can be expanded so as to connect various equations regarding the structure and 

inhomogeneity of that parameter field in a turbulent flow; however, central to 

the following theory is the idea that many of these parameters are conservative 

passive additive quantities. It is implied in the statistical methods used in this 

work that very fast wind speed measurement is necessary in order to construct a 

meaningfully-large sample of measurements for the summation in Eq. (18) and 

others. In any case, we conclude by stating that statistical methods can be used 

successfully in the study of atmospheric turbulence, regardless of the fact that, 

for the most part, the atmosphere is most accurately considered a deterministic 

(yet incredibly complex) medium. 
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DEZVOLTAREA UNEI CONDIȚII 

STRICTE PENTRU IPOTEZA LUI TAYLOR ÎN CURGERI 

 ATMOSFERICE TURBULENTE  

 

(Rezumat) 

 
În acest articol, sunt prezentate tehnici stohastice de analiză a curgerilor 

turbulente atmosferice standard. Natura proceselor aleatorii pure și a stohasticității este 

cercetată şi comparată cu natura deterministă, dar haotică, a curgerilor turbulente 

atmosferice. În ciuda dificultăților de-a implementa o interpretare statistică a curgerilor 

turbulente, se stabileşte o restricţie, sub forma unei inegalități bazate pe ipoteza lui 

Taylor, pentru a arăta validitatea unei astfel de interpretări în cazul măsurătorilor 

meteorologice. 
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